

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

https://redis.com
https://www.linkedin.com/company/redisinc/
http://www.youtube.com/c/Redisinc
https://developer.redis.com/
https://university.redis.com/

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis
Microservices

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis
Microservices

2nd Limited Edition

by Kyle Davis with Loris Cro

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis Microservices For Dummies®, 2nd Limited Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

ISBN 978-1-119-82429-9 (pbk); ISBN 978-1-119-82430-5 (ebk)

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in
the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub.
For information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Project Editor: Elizabeth Kuball

Acquisitions Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Business Development
Representative: Matt Cox

Production Editor:
Tamilmani Varadharaj

Special Help: Steve Suehring

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents v

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

About This Book.. 1
Foolish Assumptions... 1
Icons Used in This Book.. 2
Beyond This Book.. 2

CHAPTER 1:	 What Is a Microservices Architecture?....................... 3
Defining Microservices Architecture... 3
Knowing Why You Would Use Microservices..................................... 4
Starting from Zero or Breaking the Monolith.................................... 5
Understanding Where Microservices Should Be Used..................... 6
Exploring How Redis Fits with Microservices..................................... 7
Using Redis for Messaging... 8

Pub/sub... 9
Redis Streams... 9
Redis Lists... 9

Using Redis for Storage.. 10
Hashes... 10
Sorted sets.. 10
Search.. 11
Graph... 11
JSON... 11

Using Redis for Caching.. 11
Describing a Redis-Powered Microservices Architecture............... 12

CHAPTER 2:	 Microservices Communication Patterns................. 15
Defining a Stateless Service... 15
Knowing Where to Break the Monolith.. 16
Getting Services Talking.. 18
Having a Conversation with a Service... 19

Normal order.. 19
Insufficient funds... 20
Unshippable product... 21

vi Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 3:	 Distributed State with Microservices........................ 23
Defining Distributed State.. 23
Discovering the Needs of Distributed State..................................... 24
Exploring Data Types.. 25

Pub/sub... 25
Lists.. 26
Streams... 26

Publish/Subscribe or Logged Events... 27
Getting Data across Multiple Services.. 27
Clusters, Multi-Tenancy, and Redis Enterprise................................ 30

Nodes and shards.. 31
The cluster and databases.. 32

CHAPTER 4:	 Active/Active and Microservices.................................... 35
What Are CRDTs, and What Is Active/Active?................................... 35
Synchronizing Data across Clusters.. 37
Understanding How Data Changes... 38
Fitting Active/Active into a Microservices Architecture................... 40

Primary data storage with Active/Active..................................... 41
Caching with Active/Active.. 42
Scaling writes with Active/Active.. 43

Knowing Where to Use (and Not Use) Active/Active....................... 45

CHAPTER 5:	 Building a Service... 47
Getting Clear on What This Service Does... 47
Understanding the Language and Setup... 48
Processing Events.. 50

Lending books.. 50
Returning books... 52

Invoking the Service.. 53

CHAPTER 6:	 Ten Key Microservices Takeaways............................... 55

APPENDIX:	 Advanced Microservices Design Patterns.............. 57
Defining Microservices... 57
Reviewing Design Patterns... 57

Introduction 1

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

The microservices architecture is a modern way of develop-
ing applications. The goal is to reduce development com-
plexity, ease deployment headaches, reinforce resiliency,

and increase release velocity.

Redis is a highly popular, open-source, widely used NoSQL in-
memory database that focuses on high-performance use cases.
Redis is a core component of many architectures, including
microservices. Redis Enterprise extends the capabilities of Redis
by providing enterprise-grade operational functionality to Redis
without affecting compatibility with open-source Redis.

About This Book
This book is a starting point for anyone considering implement-
ing the microservices architecture and who already has a rough
idea of what Redis does in a modern application.

The book covers what an application developer or architect may
need to understand about implementing a service in the microser-
vices architecture. If you’re a manager, you’ll get a high-level
overview of the concepts the architecture provides. If you’re in
Ops or DevOps, you’ll get a basic understanding of how Redis and
Redis Enterprise operate in the context of scale and performance.

You can read the book from cover to cover, but each chapter is
self-contained, so you can dip in and out based on your interests
and needs.

Foolish Assumptions
While writing this book, we assumed you have a general under-
standing of databases, performance, and what Redis is from a
basic level. We mention the moving parts of building an appli-
cation, but we assume you know how things connect over Trans-
mission Control Protocol/Internet Protocol (TCP/IP), have a basic
understanding of cloud technology, and also have a fundamental

2 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

understanding of networking time scale (nanoseconds, millisec-
onds, seconds) and data sizes (gigabytes, megabytes, kilobytes,
bytes).

If you’re a developer, you should have a local development envi-
ronment available to run the code in Chapter 5. We also use
GitHub to host the example code, so you’ll need to be familiar
with downloading repositories and following basic instructions in
the installation README file.

Icons Used in This Book
Throughout the book, we occasionally use special icons to call
attention to important information. Here’s what to expect:

The Remember icon points out where we’re providing a friendly
reminder or giving information you may want to commit to
memory.

Material marked with the Technical Stuff icon explains any jargon
or technical processes in plain language.

Look for the Tip icon to find useful nuggets of information and
helpful advice.

Anything marked with the Warning icon will help you avoid frus-
trating mistakes.

Beyond This Book
Microservices Architecture, Redis, and Redis Enterprise are
approachable topics but have a lot of depth. This book serves as
an introduction to the concepts and the software, but there’s a lot
to learn. For more information, please visit https://redis.com/
microservices.

https://redis.com/microservices
https://redis.com/microservices

CHAPTER 1 What Is a Microservices Architecture? 3

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Diving into what microservices
architecture is

»» Discovering why you’d use services and
where to use them

»» Starting from zero or breaking the
monolith

»» Using Redis for messaging, storage, and
caching

»» Exploring a Redis-powered microservices
architecture

What Is a Microservices
Architecture?

Say the word microservice in a crowded office, and you’re
likely to see developers rip earbuds out of their ears and look
in your direction. The problem is that, although it’s not an

uncommon term, the commonly held definitions are often loose,
and the concept is poorly understood.

Defining Microservices Architecture
Reading the words microservices architecture, you may have an
intuitive idea of what those words mean: small services in a com-
puting architecture. And you’re not wrong, but you’re also not
completely correct.

In your reading on the subject, you may have seen the associ-
ated phrase breaking the monolith. If you’re anything like me, you
think of 2001: A Space Odyssey and that great scene with the apes.
Sadly, it has nothing to do with some mysterious black obelisk,

4 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

but rather the concept of breaking (or decomposing) a single, large
program into pieces.

So, thinking about these meanings, you know you’ll make small
programs (microservices) from a whole. The program still needs
to behave like a single entity at times; at other times, it needs to
have the properties of smaller programs.

A good metaphor might be a heating, ventilation, and air con-
ditioning (HVAC) system in your home. This system may con-
sist of a furnace, air conditioner, humidifier, thermostat, and
fresh-air exchanger. When you’re in your house, you never go to
the humidifier or furnace and flip a switch to turn it on; instead,
you make adjustments on the thermostat. Each individual system
comes in a box from a manufacturer, and they’re all connected,
yet each acts as a single unit. You can swap the gas furnace out
for an electric model, and the operation stays the same for you
and your family. When you adjust the thermostat in your house,
you don’t need to know what kind of furnace or air conditioner
you have; you just know your thermostat. In this metaphor, each
HVAC component is a service, and the whole design of your HVAC
system is your microservices architecture.

We use the term service instead of microservice to describe indi-
vidual programs. Your service (not microservice) is part of a
microservices architecture.

An HVAC system in a house is something that is changed maybe
once a decade, but software architectures are far more dynamic.
Cloud instances go up and down and new versions are deployed
sometimes many times per day. Plus, HVAC systems have very
simplistic inputs and a small number of connections. A microser-
vices architecture may have thousands (millions even!) of inputs
that may route to do many complex activities, not just regulate
the climate of your house.

Knowing Why You Would Use
Microservices

With many moving parts (also known as services), there’s extra
complexity to building this type of architecture. Complexity is
generally considered to be the primary foe of building good soft-
ware, so why introduce more?

CHAPTER 1 What Is a Microservices Architecture? 5

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The problem lies in the alternative. In a monolithic architec-
ture, everything is contained in one large unit. When something
breaks, as even the best software sometimes does, it breaks as
a whole. Even if you started out with a lean project, over time,
software tends to grow in complexity, as you add more and more
features and work-arounds until you have a hulking, unwieldy
monster. Updates and releases become slow and painful. A service
in a microservices architecture is smaller and concerns itself only
with minimal responsibilities, bounding the overall complexity.
If a single service becomes overly complex, rewriting that single
service is easier than having to rewrite and merge in something
to a monolith.

When you try to scale a monolith, problems tend to arise. As an
example, often one part of the monolith is particularly resource
intensive. You have no options to scale an individual part of the
monolith; your only option is to create replicas of the whole sys-
tem, which is wasteful of resources. In the worst cases, monoliths
aren’t built for replication, leaving hard limits on scale.

Services are simply easier to build and manage than monoliths.
The microservices architecture isolates complexity, allowing for
smaller, more agile teams to create a service.

You may have heard about “two-pizza teams” before, where the
entire team — leaders and all — can be fed with only two pizza
pies. The microservices architecture lends itself to being built by
many, smaller teams, so keep the pizza guy on speed dial.

Finally, a microservices architecture is flexible. Individual ser-
vices allow for a variety of platforms, languages, and tools to be
used because these choices affect only a small team at one time.
You can rapidly make changes and build and release updates, and
as long as the inputs and outputs aren’t affected, developers can
move fast without breaking things.

Starting from Zero or Breaking
the Monolith

In the previous sections, we discuss “breaking the monolith,” but
the microservices architecture is not just reparative. It’s equally
as useful, if not more so, as an option for greenfield projects.

6 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

When breaking down (decomposing) a monolithic architecture,
you have to worry about many factors:

»» Gradualizing into services: Moving from a single delivera-
ble to many small services is a radical shift and requires
careful planning.

»» Splitting at the right places: When breaking a monolith,
you have to take a step back and really think about where
the most logical places are to divide responsibilities into
services. At the same time, you want to avoid getting stuck in
how your current application is built; instead, rethink without
the technical debt of the past.

»» Transitioning a team: Making changes to monoliths is really
easy — perhaps too easy — in code. While you may need to
touch dozens of function calls to deploy a single feature,
your team can do this easily (testing and deploying is
another issue). Isolating teams to build services also isolates
teams from making changes in places for which they aren’t
responsible. A double-edged sword!

If you’re starting a truly greenfield project (a new project with no
legacy code or architecture), you sidestep many of these transition
issues. So, if you’re moving to a microservices architecture, or if
you’re starting with a clean sheet, you gain tons of advantages.
However, you have to think more carefully about your strategy
for a transition from a monolithic architecture to a microservices
architecture.

Understanding Where Microservices
Should Be Used

Using a microservices architecture is a viable strategy, but it isn’t
always right for every situation. Let’s examine a situation where
microservices would work:

»» The code base is (or will be) large. A small code base will
probably not benefit from splitting up into logical services.

»» You have an adequate staff to split into teams devoted
to particular services. Many advantages are lost if the
whole team works on one service at a time.

CHAPTER 1 What Is a Microservices Architecture? 7

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» The operational team is ready and willing to support the
many services in the architecture. Although the long-term
operational benefits of a microservices architecture are well
understood, at the start it can seem like a lot more work to
run many servers or instances than a single large one.

»» The underlying business processes are well defined. One
of the cool things about a microservices architecture is that
anyone with a knowledge of the business can look at an
architecture diagram and see the mapping. If, however, the
business processes are ad hoc or poorly delineated, then
your architecture will reflect this messiness.

If all the preceding statements are true, you may be a good candi-
date for a microservices architecture. That is not definite — there
are innumerable other reasons why you may not be ready for a
microservices architecture. On the flip side, you could be “false”
on a few points, but it’s the right time to press forward. Keep your
critical thinking hat on and truly consider if it’s right for your
organization and project.

Exploring How Redis Fits with
Microservices

Redis evolved differently than many other popular database sys-
tems. Many of the most popular database systems were developed
in an era when a company adopted a single database across the
entire enterprise. The single database system would run all the
functions of the enterprise, storing and running it all in one place.
You can probably picture this — a room full of refrigerator-size
machines, many having reel-to-reel tape drives. Of course, this is
an image best left to nostalgia and has no relationship to modern
computing infrastructure or hardware.

If that mental image is so far removed from today’s reality, why
are databases from that era still in use? The answer to that ques-
tion is probably more philosophical than this book should be, but,
in short, databases are important and not often changed. These
considerations, paired with the comfort of familiar software,
result in a powerful resistance to alter the status quo.

8 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Redis, on the other hand, was not built with this notion in mind. It
was originally designed to solve a particular problem and to be as
small and fast as possible. Redis was built in the NoSQL era where
the “shape” and use of the data was first considered; a database
was then matched with these factors.

Configurability is at the heart of Redis: In this way, databases can
be configured in opposed ways. Redis can serve as a completely
ephemeral layer that automatically manages eviction of data as
limits are reached. This configuration is often used as a caching
layer. Alternatively, Redis can be configured to be durable and to
persist keys until they’re explicitly removed. Use cases such as
messaging/stream storage or fast primary databases rely on this
second configuration.

A microservices architecture has the same type of goals in mind:
Your service is designed to fit a particular use — you’re not run-
ning everything in the business.

Redis is a very flexible and versatile database designed not to
store massive amounts of data that will be mostly idle. Redis is
designed to store active data that will change and move often with
an indefinite structure with no concept of relations. A Redis data-
base has a small footprint and can serve massive throughput even
with minimal resources. An individual service in a microservices
architecture concerns itself only with input and output and data
private to that service. This means that Redis databases can back
a wide range of different microservices, each with its own indi-
vidual data store.

The very nature of having many services means each service must
perform as fast as possible to make up for the connection and
latency overhead introduced by interservice communication.

Using Redis for Messaging
Metaphorically, databases — and, by extension, Redis — are
thought of as a box in which you put things, but this is not the only
case for Redis. Redis is quite at home passing messages between
services, either with storing them for later use or without.

CHAPTER 1 What Is a Microservices Architecture? 9

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Pub/sub
The first (and oldest) messaging capability of Redis is pub/sub.
This pattern allows for publication of messages to channels where
other services can subscribe to these messages. Both publishing
and subscribing in Redis are very lightweight and can be executed
usually in a fraction of a millisecond. The pub/sub system is fire
and forget, so it’s not right for every messaging situation, but it’s
extremely useful to notify a service to check for something else.

Fire and forget is a way of communicating that doesn’t retain the
sent message. So, if a channel has no subscribers, the message
is instantly lost. Likewise, if a subscriber goes down for a few
moments, the service can’t look back and see what it missed when
it comes back online.

Redis Streams
Redis added a new data type in version 5 that allows for a stream
of timestamp-ordered key/value pairs in a single key. Inspired in
part by the Kafka message system, this data type was designed
specifically to address situations where there are producers and
consumers (or groups of consumers) that may or may not always
be available.

Part of the power of this data type is that a consumer can wait
for messages (“block”) to come in and pick up where it left off if
it goes offline (unlike pub/sub). Given the structure and facilities
packed into the commands, it’s no surprise this plays a large role
in connecting services.

People have thought of Redis Streams as a replacement for pub/
sub. This is, however, not the case. Pub/sub and streams are just
different — each having a unique set of uses and advantages over
the other.

Redis Lists
Redis Lists are doubly linked lists of elements (strings) stored
at a single key. Like Streams, Lists can wait for new elements.
Lists are a great way of representing a first-in, first-out (FIFO)
or queue. Lists can also be rotated or atomically transferred from
one key to another, easily creating a queue with an additional
pending queue.

10 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Atomicity is a database concept meaning that two or more actions
occur in a way that are incapable of being interrupted. As a con-
sequence, you can guarantee the data changes predictably inside
an atomic action.

Using Redis for Storage
Redis was initially based on the concept of a key/value store, a
type of database that can address each piece of data by a unique
string. Redis works great in a key/value capacity, but the addi-
tional data types both built into Redis and provided by modules
give it a much richer ability to consolidate and find data than a
strict key/value store does. In the following sections, we describe
a few (but not all) of the storage data types in Redis.

Hashes
Redis Hashes are much like a key/value store inside a key/value
store. A single hash is referred to by a key that contains any num-
ber of fields and values. As an example, you may have a user with
a key of user:1234 and the fields of username, location, and age
with each field having its own value.

Some have compared it to a single row in a table, although this is
probably not a very useful comparison. Redis enforces no connec-
tion between different hashes (unlike rows in a table), and there’s
no schema (unlike the columns in a table). Hashes are often used
to represent single-depth objects or structs.

Sorted sets
Sorted sets in Redis are sets with scores, or intrinsic numeric
sorting values, for each member (represented by a string). This
allows for Redis to easily retrieve members between given scores
or at the top or bottom of the score range. Note: This data type
still has the properties of a set, chiefly that members cannot be
repeated. Trying to add a repeated member will update the score,
rather than insert a second one.

As an example, you may have items in an e-commerce store, with
the score being the price and the member being a unique product
ID; listing the items by ascending or descending price could use
the same structure.

CHAPTER 1 What Is a Microservices Architecture? 11

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Search
RediSearch, a Redis module, accommodates full-text search. This
allows Redis to store documents and search across multiple fields
and types. Like hashes, each document is a series of fields and
values. Unlike hashes, all the documents are bound together into
an index, and individual fields can be described in a schema that
makes them queryable via a special query language.

Graph
RedisGraph, also a module, is designed to store nodes and ad hoc
relationships. Each node contains a single-depth series of attri-
butes; those nodes can be connected to each other through rela-
tionships that can also have attributes. Collectively, the nodes and
relationships are referred to as a graph. The graph can be queried
with the Cypher query language.

JSON
JSON documents can be stored in Redis using the RedisJSON mod-
ule. This module allows for the storage of complex, deeply nested
JSON documents each at its own key. By specifying a path, you
can retrieve parts of a JSON document very precisely, allowing for
data buried deeply within the structure to be retrieved — without
reading the whole thing — and it will be updated atomically.

Using Redis for Caching
Redis is a very fast database that runs entirely in-memory. As
a consequence, it can be placed in front of your existing disk-
based database or to prevent an expensive or time-consuming

REDIS MODULES
Search, Graph, and JSON are all implemented as Redis Modules. Redis
Modules are extensions to the core data types and commands of
Redis that operate from within Redis and allow for new and extended
functionality. Modules have direct access to memory and CPU
resources, so they’re on par with the in-built commands. The software
development kit for modules is available in a variety of systems pro-
gramming languages, so you can even write your own.

12 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

application programming interface (API) call. Redis has built-in
timers that remove data at keys after a specified time period (time
to live, or TTL) as well as very efficient key presence checking.
These two features allow your application to make a quick check
in Redis before going out and making a slower or more expensive
call. You can use TTL to ensure you’re not returning stale data.
Additionally, you can specify database-wide eviction policies that
ensure that you’re optimally using your memory.

Redis Enterprise also enables you to extend your random access
memory (RAM) into flash memory with Redis on Flash. Doing so
places the most-used pieces of data in the fastest storage and
least-used into flash (solid-state drive, or SSD) storage. By tier-
ing the storage between RAM and flash, you optimize the use of
the more-expensive RAM and the less-expensive flash memory
without having to evict for resource constraints.

Describing a Redis-Powered
Microservices Architecture

A key component of the microservices architecture is that each
individual service stands on its own. The service is not tightly
coupled with another service. Going down one more level, this
means that services must maintain their own states, and to main-
tain a state you need a database. Because services can be numer-
ous in an architecture, overhead is the enemy of scale — services
that rely on infrastructure that itself needs lots of resources sim-
ply to run don’t make much sense.

In an ideal situation, the service data is completely isolated
from other data layers, which allows for uncoupled scaling and
cross-service slow resource contention. Services are specifically
designed to fill one role (business-process-wise), so the state
they store is inherently nonrelational and well suited to NoSQL
data models. Although saying that Redis is a blanket solution for
all data storage in a microservices architecture is unfair, it cer-
tainly fits well with many of the requirements.

After you build your service, the service needs to talk to other ser-
vices. In a traditional microservice environment, this occurs over
private HTTP endpoints using REST or similar conventions. After

CHAPTER 1 What Is a Microservices Architecture? 13

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

a request is received, the service begins processing the request.
During the processing, occasionally a tricky problem occurs:
What happens when you want to transactionally do processing
across multiple services? You can’t solely rely on layers of HTTP
requests, because failures along the way result in partially applied
transactions. The saga pattern can be used to solve the problem
of transactions across services, and Redis Streams can be used to
implement sagas.

The saga pattern is not a new idea. It was defined in 1987 for long-
lived transactions when something was prone to latency because
a human was involved in the transaction. Sagas take their name
from the Old Norse word for a narrative — it’s a story of what
your data does in the transaction that can be written and retold.

The HTTP approach works and is widely used; however, an alter-
nate method of communicating is available in which services write
to and read from loglike structures (in this case, Redis Streams).
This allows for a completely asynchronous pattern where every
service announces events on its own stream and listens only to
streams belonging to services it’s interested in. Bidirectional
communication at that point is achieved by two services observ-
ing each other’s streams.

Isolating the data from one service to another is an important part
of the microservices architecture. If you’re using Redis Streams as
a communication method or sagas as well as storing your data in
Redis, they should be used in different instances.

Even in services that don’t use Redis for storage, communication,
or sagas, Redis plays a vital role. To deliver a low-latency final
response, it’s critical that each individual service responds as fast
as possible to its own requests, often outside the performance
threshold of traditional databases. Redis, in this case, plays the
role of the cache, where the teams that developed the microservice
decide where data is not always required to be retrieved directly
from the primary database, but instead can be pulled from Redis
at a much faster rate. Additionally, any external data services that
need to be accessed through an API will likely be far too slow for
a reasonable response time — again Redis is used in this case to
prevent unneeded and lengthy (or potentially costly) calls from
impacting the overall performance.

CHAPTER 2 Microservices Communication Patterns 15

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Defining the stateless service

»» Breaking up the monolith

»» Eavesdropping on services’ conversations

Microservices
Communication
Patterns

A service in the microservices architecture can’t really do
anything useful on its own. Indeed, in the microservices
architecture, the communication between services actually

creates the utility. This chapter introduces the patterns that are
available to services using Redis, which provides the plane in
which services can communicate and create utility.

Defining a Stateless Service
A few years ago, when you joined a company, you may have been
introduced to the servers you would be working with — this was
almost like a personal introduction. You knew and understood
their names, their jobs, where they lived, and sometimes even
how old they were and which of them had quirks. Some servers

16 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

even had personalities and temperaments. We recall an exchange
that went something like this:

Coworker #1: Production is down! Does anyone know
anything?

Coworker #2: Let me check. Yep. It’s Titan having a fit again.
Titan always does this at the worst time. Let me talk nice to
Titan and fix it.

Hearing Coworker #2’s response alone, you could think that Titan
was a dog or some other living being. Servers were pets. We cared
for them and made sure they had a long life — even bragging
about years of uptime. When organizations started moving to the
cloud, this attitude persisted for a time before people began to
realize that it was madness. The server was just software run-
ning on some machine you’d never see and could disappear at any
moment. What if you wrote your software where it just didn’t care
about the server itself? And it worked anywhere and didn’t require
any lengthy process to initialize or shut down?

Because of these requirements, the concept of the stateless service
was born. In this case, your service itself doesn’t contain anything
special: On startup, it’s configured to connect to an external data
store and sits behind a gateway that can be configured to mask
any changes from the world.

On the whole, the service itself becomes greatly simplified and
boiled down to logic only. This does, however, present some chal-
lenges. Because you never know if the next request will be served
from the current service, you can’t make any assumptions nor
pass the data along directly. Either the data has to come in from
the call itself, or it has to come from an external data store.

Knowing Where to Break the Monolith
Looking at a large, complex software architecture and trying to
determine where to section it into services can seem intimidating.
What’s interesting about the microservices architecture is that
this is less about the technical requirements for each individual
service and more about what is logical for your organization.

CHAPTER 2 Microservices Communication Patterns 17

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In monolithic architectures, you may have very ad hoc patterns
for accessing data — cross-joining tables, updates across func-
tional lines, and so forth. In a microservices architecture, how-
ever, each service has access to only the data legitimately relevant
to the function of that service.

Take, for example, a shopping cart in an e-commerce application.
A shopping cart service would track only the items user #123 has
in his/her shopping cart. In a monolith, you may have a single row
in a table that represents the demographic data about the user
(name, location, preferences, and so on). Another table represents
the shopping cart that’s joined to another table with the product
IDs. When breaking out this cart service, you won’t, for example,
be able to join tables because in a microservices architecture, each
service has a private/internal data store only. In exchange, you
gain flexibility in terms of composition and scalability. Indeed,
in a monolithic implementation of our example, when trying to
scale up the number of products, users, or shopping cart sizes,
each function (users, products, and carts) is so tightly coupled
with the others that they all have to scale together. Whereas hav-
ing users, products, or carts as a service, you’re free to scale, or
even modify, each service independently as long as the interface
stays the same.

Now, suppose you break out the service and store the data in, say,
a Redis Sorted Set — with the quantity represented by the Sorted
Set score and the item by the member, as shown in Table 2-1.

What’s absent is any description of what product ID “abc” actu-
ally is and who usr:123 represents. This is okay. The service is
doing one thing: keeping track of the cart. The products service
would tell you what “abc” is, and the users service shows who has
the “123” ID.

TABLE 2-1	 A Redis Sorted Set
Score (Quantity) Member (Product ID) Redis Command

2 abc ZADD usr:123 2 abc

1 xyz ZADD usr:123 1 xyz

1 efg ZADD usr:123 1 efg

18 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

What’s cool about this is that each service can be independently
scaled. Imagine Black Friday: The shopping cart service will be
under extreme write load, whereas you may have just a little more
load on the user service or the product service — the product ser-
vice is probably just reading more than normal in this case. In a
microservices architecture, you can scale up only the shopping
cart services — essentially adding resources only where they’re
needed.

The next challenge is to understand what needs to happen when
you have an operation that needs to transactionally operate across
multiple services. Traditional transactional integrity cannot be
guaranteed in this case. Each service has its own data, and these
services are using application programming interfaces (APIs) to
communicate with each other. The other option employed in sim-
ilar scenarios is two-phase commit — where the data layer(s)
prepare for the data, then block until everyone is prepared, and
finally commit all at once. This is impractical because two-phase
commit can block further operations and requires a centralized
coordinator to make sure everyone is prepared and committed.

Two-phase commit is a coordinated distributed transaction mech-
anism. In the first phase, all the participating services vote on
whether the transaction is valid. In the second phase, if all the
services saw it as valid, the data is written, every participating
service acknowledges the writes, and the transaction is over. If
no agreement is reached during the first phase, any actions are
undone, acknowledging the undoing of the transaction, and
finally the transaction ends. During all the phases, the services
can’t do anything else because it might disrupt the validity of the
transaction.

Getting Services Talking
After determining where to break a monolith, you next face these
challenges:

»» Translating the data layer into a reasonable communication
pattern for the specific domain.

»» Determining the correct semantics required by this pattern.

CHAPTER 2 Microservices Communication Patterns 19

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Considering not what the other service needs (this would be
tight coupling), but rather where it needs to communicate
with other services. This makes the overall architecture more
accommodating for the future.

Generally, it’s unimportant to issue messages that have no feasi-
ble external utility. For example, if you’re writing a single entity
to several different structures in a Redis database, but the entity
is written atomically, this should be considered a single message.

Additionally, the way the internal storage is handled should not
be visible to the messaging; instead, the messaging should follow
the underlying business rules. An HTTP endpoint that synchro-
nously creates a user, for example, would issue a message that
indicates that the user is created, not that a new user welcome
message was sent.

Finally, while messaging may cover a vast amount of the com-
munication need in a microservices architecture, often a synchro-
nous response is still needed, so it’s not an antipattern to, for
example, have both an endpoint to check if a package is delivered
and to issue a message that a package was delivered.

Having a Conversation with a Service
In this section, we imagine that we have actors playing the roles
of our services in an e-commerce application. Let’s take a look at
a few scenarios and how the services are communicating.

Normal order
In this interaction, we’ll follow the personified services when
everything works as normal — with no hiccups or failures. Take
note that, in this example, you never know how a given service
does anything, and it doesn’t matter: You could replace a service
with one that does the same operation entirely differently, and as
long as they communicate the same way, it’s just fine.

Order Service: (shouting) Hey, I’ve got an order #123 for
$1,234 on user ABCD, which is currently AWAITING_PAYMENT.

User Service: (looking at Order Service’s event stream) An order
AWAITING_PAYMENT, eh? Let’s see how much ABCD has in

20 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

their account. Yup, that works. I’m going to reserve $1,234 out
of that account for that order. (shouting) Order #123 was PAID
in full!

Order Service: (mumbling to itself) Cool cool cool. Let me
update that order. (shouts) Order #123 for user ABCD is now
AWAITING_SHIPMENT!

Fulfillment Service: (eavesdropping) An order AWAITING_
SHIPMENT you say? Just a second, let me check stock. . . .

Order Service is now preoccupied with another order, ignores
fulfillment service.

Fulfillment Service: (to Order Service) Order #123 for user
ABCD? I SHIPPED it.

Order Service. Cool. I’ll update my records to change this
order to COMPLETED_SUCCCESSFULLY. Oh, User Service?
Could you go ahead and change those reserved funds for
ABCD to a full-on deduction?

User Service (waking from a nap) What? Where am I? How long
has it been? (Shakes off tiredness) Right. ABCD, we reserved
$1,234. Let me deduct that fully.

Insufficient funds
The interaction in this scenario outlines the situation where a
problem occurs with the payment. Notice that the Fulfillment
Service is never even involved — because the domain of fulfill-
ment is never activated, this part of the architecture is idle or
doing something else.

Order Service: (shouting) Hey, I’ve got an order #123 for
$1,234 on user ABCD, which is currently AWAITING_PAYMENT.

User Service: (to Order service) An order AWAITING_PAYMENT,
eh? No can do. Not enough money in User ABCD’s account.
(shouting) Order #123 has FAILED_PAYMENT_NO_FUNDS.

Order Service: Oh, wow, then I guess (shouting) Order #123 is
now BLOCKED_NO_FUNDS.

CHAPTER 2 Microservices Communication Patterns 21

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Unshippable product
The personified services here have to deal with a shipping prob-
lem rather than the previous ordering problem. In this case, the
funds have been reserved already, and the User Service has to
compensate for the problematic order.

Fulfillment Service: (eavesdropping) An order AWAITING_
SHIPMENT you say? Just a second, let me check stock. . . . Okay,
product “haggis” was found. Shipping address is in the United
States. Let me look at my list. . . . Nope, can’t ship haggis to the
United States, so I guess (shouting) Order #123 for user ABCD
SHIPMENT_FAILED_BANNED_PRODUCT.

Order Service: Oh, Order #123 for User ABCD was not
fulfilled. . . . What a shame. So now (shouting) Order #123 is
AWAITING_REFUND.

User Service: (waking from a nap) What? Where am I? How
long has it been? (Shakes off tiredness). Right. ABCD, we
reserved $1,234, giving those back now. (shouting) Money for
Order #123 for User ABCD was REFUNDED.

Order Service: Great, so now I guess (shouting) Order #123 for
User ABCD is COMPLETED_WITH_FAILURE.

OrderFailureMonitoring Service: Oh, really? Interesting. . . .

CHAPTER 3 Distributed State with Microservices 23

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Understanding why distributed state is
tricky

»» Digging into the needs of distributed
state

»» Examining data types

»» Weighing pub/sub against logged events

»» Moving data across services

»» Clustering for multi-tenancy

Distributed State with
Microservices

Distributed is often a feared word in software development.
Usually it conjures up worries about simple things becom-
ing very complicated, as well as poorly understood termi-

nology and edge cases. In this chapter, we dive into what
distributed state is and how you can manage it using the com-
mands and data types built into Redis.

Defining Distributed State
Non-distributed state is straightforward: It has one centralized,
canonical representation of state. This state is accessible — you
can read (and manipulate) the state fearlessly. Distributed state
has many murky corners, making it tricky. By that we mean, with
distributed state, no one picture of the data is complete — only
messages being passed back and forth create the whole picture.

These messages might arrive out of order, partially, delayed, or
even not at all. You must consider failure when you’re dealing

24 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

with distributed computing. Simply the nature of distribution
outlines that, by introducing multiple machines (virtual or physi-
cal), you increase the complexity and latency as compared to the
same operations being executed in a single environment.

Off-hand examples sometimes include massively oversimplified
(and frankly unusual) scenarios of having completely stateless
services. These services do things like input a few numbers and
calculate a far bigger or smaller number. These examples are pre-
sented as a way to scale this very mathematically intensive opera-
tion. That’s nice, but when dealing with more common problems,
we have situations that require pieces of context from all over the
architecture, and services can’t just accept inputs and give out-
puts. This real-life class of services needs access to its own data,
as well as to the data managed by other services.

Discovering the Needs of
Distributed State

In a large, complex production system, state change may be the
result of many different inputs. Inputs might be user activity that
affects only their own experience or that has a greater effect.
Inputs can come from other services, however, at a machine-
scale speed affecting a minor or even more global state. Either
way, by a volume of users making relatively slow state changes or
by a small number of machine processes making high-frequency
changes, the state will be constantly moving.

The speed and scale at which the state is changing makes manag-
ing this with some sort of synchronous application programming
interface (API) call seem overwhelming. Additionally, changes
to the state may be relevant not just to the end result. Request/
response API endpoints are not well suited to this type of change
observation.

To cope with this type of rapid state alteration coming from dif-
ferent services, the architecture must be able to keep track of
changes in an ordered way, without having to lock or pause any
other given process — everything must be asynchronous. Given
these constraints, a service may need to retrieve the state as a
whole (say, on startup), or it may just need to retrieve changes
since a given point in time.

CHAPTER 3 Distributed State with Microservices 25

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Finally, because distributed state is vital to the operation of many
services, anything backing the state should not be ephemeral —
in the case of a power failure or other disaster, the state should
be able to be restored from last-known good. Additionally, it’s
unwise to assume all services and connections will always be
up and/or high quality. This consideration means anything that
will manage distributed state must be able to handle disruptions,
preferably without having to re-retrieve needlessly. (For exam-
ple, re-retrieving a required state only to find out nothing has
changed is a waste.)

Exploring Data Types
Redis descends from the lineage of key/value stores but extends
the key/value concept to include a data type that holds the value.
All data is, at some level, accessible by a key in Redis, but each
key also has an associated data type. The data type dictates which
commands can be used on the key and how data will be stored at
the key. Many of these data types are primarily used for storing
information; others are designed to transport information; and
still others can be used for both. If the data type can be used to
transport data, then it could be useful for distributing state.

In this section, we fill you in on how the following three data
types can be used specifically in distributing state:

»» Pub/sub

»» Lists

»» Streams

Pub/sub
Redis has built-in pub/sub, or more formally, publish and sub-
scribe. This is not strictly a data type, but in Redis it stands alone
and often is categorized as a data type. This mechanism allows for
one attached client to publish a message to any number of other
subscribing clients. Subscribing clients are placed into a mode
where they only receive published messages. As such, these mes-
sages are instantly, without any form of polling, received.

26 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Pub/sub in Redis has very little overhead because it’s fire and
forget — a way of communicating that doesn’t retain the sent
(published) message. The lightweight, fire-and-forget publishing
is great for notifying services of something that needs immediate,
but not retroactive, attention.

Lists
Lists, effectively doubly linked lists in Redis, are accessed primar-
ily by pushing in and popping values off either to the left or the
right end of the list. It’s also possible to retrieve, insert, or remove
items from the middle of the list, but this comes at a computa-
tional complexity penalty.

Like pub/sub, lists do not need to ask for new items; they have the
ability to “block” until items arrive. The blocking functionality —
paired with low-complexity operations — makes lists ideal for
maintaining queues.

Blocking in Redis can mean one of two things:

»» Blocking the server from doing any other operation, which is
usually intentionally done only in very specific situations
because it has serious performance implications.

»» A blocking command that blocks a particular database/client
connection. This has only a localized effect to a single
connection and provides the ability for a command to
intentionally not respond until a specific condition is met.

Streams
Recently added to Redis, Streams are a way of keeping time
sequenced, field/value pairs. When you add an item to a stream,
it’s stored by a millisecond precision timestamp and a sequential
identifier in each millisecond time frame. Streams can be read
between two timestamp/identifier bounds, or, similar to lists,
Stream commands can wait for new items.

Additionally, Streams have a mechanism that allows for distrib-
uting load across a group of readers to manage a producer and
consumer model. Streams can be used to store sequences of data
that may be consumed by other services.

CHAPTER 3 Distributed State with Microservices 27

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Publish/Subscribe or Logged Events
It’s tempting to look at pub/sub as an option for maintaining dis-
tributed state because it’s very lightweight and easy to imple-
ment: Services subscribe to what other services are publishing.
However, the fire-and-forget property of publishing limits its
uses.

Think of a scenario in which something causes a network disrup-
tion between services. During the disruption, important events
take place that alter the state for some, but not all, services. With
pub/sub, any non-connected service just misses out on these
events, and you end up with data that eventually isn’t consistent;
instead, it’s inconsistent with no way to recover.

Lists (used as queues) or Streams provide messaging with a form
of persistence. With the previous example, disconnected services
could still pop items off a queue when they reconnect. Perhaps
more compellingly, with Streams, a service can find the point
where it left off and process events that alter the state.

Does this mean that pub/sub has no place in a microservices
architecture? Pub/sub can provide a very useful notification
in situations where processing is relevant only to some sort of
ephemeral, point-in-time event. This, however, by nature, is not
a state-altering event.

Lists can be used as logged event stores, but they have some limi-
tations. Namely, the list only implies order in a static sense. It
is possible to get a range of values by an index offset, but this is
dependent on the position relative to either side (left/right) of the
list; this operation may be computationally intensive, depending
on how far it is from each side. Indeed, unless the list never grows
or grows indefinitely, lists are better used to represent a queue
rather than a list of logged events.

Getting Data across Multiple Services
Getting data across different services is a challenge in a microser-
vices architecture. You have to keep data isolated yet allow for
both synchronous and asynchronous communication. Addition-
ally, you need to make sure that each service is responsible for

28 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

data related to its domain. Let’s take an example of three services
used to send an e-book to a user:

»» The User service maintains biographical information about
users.

»» The Mailing service takes care of sending the book to the
user.

»» The Order service accepts orders.

The Order service has the user’s email address and PDF name, and
it synchronously triggers the Mailing service. The Mailing service
needs the first and last name from the User service to proceed,
though. Although it would be possible to synchronously contact
the User service for every mailing, this starts to resemble a water-
fall with rising latency.

If the Mailing service needs only a small bit of information from
the User service, is it worth it to make a synchronous call for every
mailing? How can this be resolved without making an extra API
call? The answer lies in using messaging with a Stream:

»» When the User service updates a user’s name, it adds an
entry in a Redis Stream containing the user ID and the name,
as well as updating the normal data held by the service.

»» The Mailing service doesn’t care about biographical informa-
tion for users in this case, so it ignores any messages about
this.

»» The Order service does care about the name change, so it
consumes messages relating to biographical information.

When the Mailing or Order services consume the information
from the User service, they record this in their own private stores.
Indeed, this is critical: If all the instances of either of these ser-
vices is down, they must be able to find out the current state by
consuming messages past a given known recorded point. This
makes the services tolerant to underlying infrastructure failure.
Additionally, because each service has its own copy of the data,
these services can still be up and running even though the User
service may be in an outage scenario.

One of the hard and fast rules of a microservices architecture is to
make sure each service is only loosely coupled to other services;

CHAPTER 3 Distributed State with Microservices 29

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

a key point to this is that services should not be able to share the
same database. This may seem arbitrary, but if you think about
it, if you have two services that write to the same database entry,
then both services have to be updated when the format of the
entry changes. Considering this scenario, how does this hold true
when multiple services are reading from the stream, as shown in
Figure 3-1?

Here’s what’s happening with each of the services:

»» User service is writing to the Stream regarding userid 2233.
This has not completed yet.

»» Order service is reading only demographic-related informa-
tion from the Stream and is somewhat behind. The informa-
tion from the Stream updates the internal store for service.

»» Mailing service is reading only address-related information
from the Stream and is up to date. The information from the
Stream is stored in its own internal store.

FIGURE 3-1:  When multiple services read from the stream, the stream
transports information rather than stores data.

30 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In this case, the stream is acting as an interface or transport of
information rather than storage of the data. Also note that in this
example, we’re only ever reading from the stream. The stream
key is analogous to the endpoint, and the results are similar to
how an API endpoint outputs the data. As long as the User service
keeps this information the same, how the data is processed com-
ing in would also stay the same.

This model is fine if you have one instance of each service. What
happens if you have, for load distribution reasons, four instances
of the Mailing service? Having each copy of the Mailing service
write an update to the internal mailing service database is, at best,
wasteful and, at worst, could yield incorrect data.

Redis solves this with the Streams consumer group commands.
This enables a group of consumers (those reading from the
stream to get the state, in this case) to manage how the items are
delivered to groups of clients (also known as single instances of
the same service). In this way, you can have unread, pending, and
acknowledged messages.

Clusters, Multi-Tenancy,
and Redis Enterprise

If you have only worked with a single instance of Redis, the idea
of Redis being central to a microservices architecture may seem a
little odd. A single instance limits you to only the random access
memory (RAM) available on a virtual machine — outgrowing these
confines seems easy. It gets more complex when you consider cre-
ating a stream for connecting services and keeping all the data
isolated. Redis Enterprise has the ability to cluster together many
instances of Redis across many machines and to provide a manage-
ment plane to isolate data from cluster and database operations.

A Redis cluster is a collection of nodes. There is no central point to
the cluster, just a series of peer nodes. A single cluster can contain
a number of databases. These databases are completely isolated
from one another — from the standpoint of data and keys and
central processing unit (CPU) utilization. A database is made up
of a number of shards or a division of the Redis keyspace. Each
shard is responsible for a number of “hash slots,” a further logical
division of the keyspace.

CHAPTER 3 Distributed State with Microservices 31

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Nodes and shards
A node of Redis Enterprise represents a machine (a container, vir-
tual or bare metal). Each node, as shown in Figure 3-2, has two
primary layers, the Enterprise Layer and the Open Source Layer.

The Enterprise Layer provides management and access control to
the underlying data path located in the Open Source Layer. Redis
Enterprise bifurcates responsibilities of management and data
manipulation so that management is done through an entirely
separate API and authentication mechanism as compared to the
data layer. Each node in the cluster is a peer when it comes to the
Enterprise Layer.

Your service connects to Redis Enterprise via a Zero Latency
Proxy. This proxy is compatible with the Redis open-source pro-
tocol (Redis Serialization Protocol, or RESP) and simplifies devel-
oping software as it abstracts away clustering complexities. To
your code, a Redis Enterprise database appears as a single, very
large instance of Redis. If you enable High Availability on Redis
Enterprise, the database endpoint will stay the same even if the
underlying node goes down.

The Open Source Layer contains a series of shards, each pinned to
a CPU core. Each shard is equivalent to a single instance of open-
source, non-clustered Redis, inheriting the single threaded, event
loop architecture of the Redis core.

Individual shards are solely responsible for a number of hash
slots — no key will ever reside in multiple hash slots (and,
thus, neither in shards nor nodes) in a given cluster. This allows
Redis Enterprise to maintain true multi-tenancy: Both CPU and

FIGURE 3-2:  A node of Redis Enterprise has two primary layers: the
Enterprise Layer and the Open Source Layer.

32 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

memory resources are isolated entirely from both other databases
and other shards. Shards may also integrate a module as needed
to extend the functionality of the database.

The cluster and databases
Aside from being made up of a number of nodes, a cluster provides
a common management, configuration, and monitoring pathway
to each database contained in the cluster. A single database may
span multiple nodes in the cluster, allowing the database to scale
horizontally, as shown in Figure 3-3. A database can also be con-
figured to extend outside of RAM by utilizing flash memory as a
“cooler” storage tier.

The cluster manages high availability at the database level by set-
ting shards as either master or replica instances. The cluster is
aware of placement of these shards and can ensure that a single
node failure will not bring down both master and replica.

FIGURE 3-3:  A single database spanning multiple nodes in the
cluster, which allows the database to scale horizontally.

CHAPTER 3 Distributed State with Microservices 33

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Persistence is also controlled at the database level, to allow for
a tunable persistence. Redis Enterprise can be configured to be
entirely ephemeral or persisted with periodic snapshotting, or
individual write-level Append Only File (AOF) persistence. This
enables both databases geared for caching and for primary data-
base workloads to exist in the same cluster.

From the perspective of a microservices architecture, a single
cluster can provide databases to many different services, each
with its own isolated instance, tuned for the given workload.
From an operational standpoint, this can be deployed in a number
of different ways, either directly or through a Kubernetes orches-
tration layer on Google Kubernetes Engine (GKE), RedHat Open-
Shift, or vanilla Kubernetes.

CHAPTER 4 Active/Active and Microservices 35

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Defining CRDTs and Active/Active

»» Exploring synchronized data and how
data changes

»» Using Active/Active for primary data
storage

»» Caching with and scaling writes with
Active/Active

»» Knowing where to use (and not use)
Active/Active

Active/Active and
Microservices

Data cannot move faster than the speed of light (299,792.5
km/second). As a consequence, the physical distance
between a user and a server, and a server and a database, is

critical for low latencies. In this chapter, we explore how an
Active/Active database can cheat these physical limits and allow
for geo-local latencies in multiple points without having to worry
about conflicting writes.

What Are CRDTs, and
What Is Active/Active?

You may have never heard of CRDTs or Active/Active. Indeed, it’s
an active area of research (see what I did there?). As with anything
new, these are often both overgeneralized and overcomplicated

36 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

by anyone first learning about them. To begin, let me break down
what each term means and how they relate to each other.

»» CRDT stands for conflict-free replicated data type. This class of
data can be replicated across two or more machines and
then recombined in a predictable manner without losing
data. In other words, your data can exist in two different
places and, well, that’s okay.

Usually this is a very bad thing because you can’t tell which
piece of data is correct. CRDTs must have some structure
and certain (predetermined) semantics, as well as implicit
metadata that let the database reason about the resolution
should two or more versions ever get out of sync. Redis
relies on the concept of data structures and already main-
tains much of this metadata.

»» Active/Active describes the architecture of a cluster in which
one can both read and write to two different machines for
the same piece of data.

Imagine asking who’s in charge on a construction site only to
have two people (Foreman Red and Foreman Dis) respond, “I’m
the foreman responsible for all tasks.” You could think of this as
an Active/Active construction site — requiring careful coordina-
tion to make sure work was effectively completed without miss-
ing a step.

From the perspective of Redis Enterprise, CRDTs are the method
in which an Active/Active architecture is achieved.

Returning to our construction site, the two foremen could work
together by constantly chatting about the tasks at hand, but that
would be a lot of communication overhead. On the other hand,
both foremen share a very specific set of rules for every type of
task, allowing for one to immediately understand what’s going on
with any given task. If Foreman Dis was out sick, you could always
just ask Foreman Red — they’re interchangeable and can work at
the same time. This is, in a bit of a stretched metaphor, how Redis
Enterprise does Active/Active.

Another, less abstracted, example would be a shopping cart on an
e-commerce site while traveling:

CHAPTER 4 Active/Active and Microservices 37

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

1.	 Imagine, as a user, that you’re on a train that winds between
Copenhagen and Rome. You do some online shopping on
your phone.

2.	 As you speed along, you add and remove items from your
cart.

3.	 On your journey you’re routed to different data centers
based on your location for lower latency.

Without Active/Active, two options exist:

a.	 The server can write quickly to a copy of the data at each
data center, which may cause an item from your cart to be
overwritten by out-of-date data.

b.	 The database could have one master copy the shopping
cart that exists at one location, losing the geo-local
advantage of your data centers because the database
could be physically far from the servers.

With Active/Active, you get the best of both worlds because
you can read and write to any copy of the data, and the
CRDT-based data resolution means you won’t inadvertently
overwrite as the databases synchronize.

4.	 You get to keep filling your cart — everyone wins.

Synchronizing Data across Clusters
Redis Enterprise is a cluster made up of nodes that equates to
a container, virtual machine, or physical machine. Each node is
responsible for a portion of the data in a database. Nodes, them-
selves, are made of shards that also contain a further subdivision
of the data, which is managed by a core of a central processing
unit (CPU). So, for example, suppose you have a four-node cluster
and each node has two shards. It’s possible to have a database
that has eight keys, and each of these keys would be managed by
a different core. In this situation, the data is never touched by two
different CPU cores.

When using Active/Active Redis Enterprise, clusters are joined
together, and each cluster maintains an entire representation of
data. When a change is made to one cluster, that data is auto-
matically synchronized with the rest of the participating clusters.
Later, you can add more clusters, and they’ll synchronize the data

38 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

as required. A cluster can be offline for any amount of time and
rejoin, at which point the data will become synchronized from any
previous state.

The clusters cannot be fully consistent with each other as they
may be global-scale distances apart, and Redis Enterprise does
not wait for global consensus (making this flavor of Redis Enter-
prise “consensus-free”). Because of the properties of CRDTs,
they always synchronize to the same state, even if individual keys
become very disparate.

Understanding How Data Changes
CRDTs can be difficult to understand without an example. Let’s
consider the situation shown in Table 4-1.

Because Active/Active Redis Enterprise knows you’re semantically
treating the key foo as a counter, it can calculate the correct value.
For example:

»» After Step 3, foo has a counter value of 2 according to Cluster
A, and Cluster B is not set (effectively a 0).

»» After Step 5, Cluster A still has a counter value of 2, while
Cluster B has a counter value of 23.

TABLE 4-1	 Resolving Counter Conflicts
Step Operation Cluster A Value Cluster B Value

0 Initial Sync Value Not set (0) Not set (0)

1 > INCR foo 1 Disconnected

2 > INCRBY foo 2 3

3 > DECR foo 2

4 > INCRBY foo 10 Disconnected 10

5 > INCRBY foo 13 23

6 Sync 25 25

CHAPTER 4 Active/Active and Microservices 39

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» After Step 6, when a synchronization occurs, Cluster A and
Cluster B have come to the same value because it’s the sum
of the known events instead of deciding if Cluster A or
Cluster B has the correct value.

The preceding scenario is not complicated to understand, but as
you get into other data types — like Sorted Sets, Sets, or Lists —
more complex semantics are needed to ensure a predictably
synced state. Let’s take an example, shown in Table 4-2, of a
group membership represented as a Redis SET.

In Table 4-2:

»» Steps 1 through 5 can be reasoned about simply: Sets exhibit
add win behavior resulting in a union of the two conflicting
states.

»» Steps 6 through 9 follow the observed remove rule, which
means the database will remove members of a set only

TABLE 4-2	 Resolving Set Conflicts
Step Cluster A Value Cluster B Value

0 > SMEMBERS group [] > SMEMBERS group []

1 > SADD group paul

2 > SADD group jorma

3 > SMEMBERS group [paul] > SMEMBERS group [jorma]

4 Sync

5 > SMEMBERS group [paul,
jorma]

> SMEMBERS group [paul,
jorma]

6 > SREM group paul > SADD group grace

7 > SREM grace

8 Sync

9 > SMEMBERS group [jorma,
grace]

> SMEMBERS group [jorma,
grace]

40 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

when the instance has already been made aware of that
member.

In this case, grace was added to the group in Cluster B but
not Cluster A.

»» With the observed remove rule, the command in Step 7 is
ignored because Cluster A has, until that point, not been
aware of the member grace.

This is a different circumstance than in Step 6, because
Cluster A knows about paul because of the synchronization
that occurs on Step 4.

Thankfully, all these rules are not something you need to code
yourself. Redis Enterprise takes care of this automatically. You can
find supported types and how each one resolves at https://docs.
redis.com/ in its “Developing for Redis Enterprise” section.

Fitting Active/Active into a
Microservices Architecture

A microservices architecture has many connected services yet has
the same performance demands as any other piece of software:
Delivery as near to 100ms end-to-end is critical for an instant
experience. Consequently, this connection between the service
and the database is critical and, as such, you want your data to
reside as close to your services as possible.

The distance traveled from your user to the location in which the
application (and all the services) is should be as small as possi-
ble. With Redis Enterprise Active/Active, you can have multiple
geo-local installations of all your services, and all services write
and read from instances that may be in the same data center or
even the same rack. Each service is connected to a complete local,
active copy of the data. Redis Enterprise synchronizes the data
between the connected clusters, so it doesn’t matter if you read
and write to a data center in Vancouver or one in New York — the
data set is maintained without conflict.

https://docs.redis.com/
https://docs.redis.com/

CHAPTER 4 Active/Active and Microservices 41

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In a microservices architecture, each service must maintain its
own data. This means you may have 25 load-balanced instances
of your BookLending service all connected to the same database,
a database that may be Active/Active and synchronized across
many clusters. However, it’s an antipattern to have more than one
service operating on the same data. So, you can’t have the Book-
Lending and the User service both manipulating the same data —
this would be considered tight coupling.

Primary data storage with Active/Active
Services often have their own storage needs that can be easily
addressed with Redis. As an example, an activity tracking service
may keep track of interactions with items by a unique identifier.
This type of data is easily structured in Redis by using simple
counters and a key based on the identifier. Many copies of the
service may exist; to ensure geo-local latencies, they may be
distributed to several data centers across a wide area. Active/
Active can be used to maintain the data across the data centers in
a way that prevents conflicts and erroneous information.

The topology in Figure 4-1 shows three clusters, each connected
to four instances of the same service. Users would be routed to
the gateway (not shown) that’s physically nearest to them, which
is in turn connected to the required services. Because each of the
services has a Redis Enterprise Cluster within its own data center,
reads and writes are routed only to the local service.

FIGURE 4-1:  Three clusters, each connected to four instances of the same
service.

42 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

An interaction with an item by a user in the east is recorded to
that database, and Active/Active will automatically synchronize to
the other clusters. Users connected to the other data centers will
be working with the same data, yet writes and reads are without
extra latency.

An additional advantage of this topology is that an extra degree
of flexibility and fault tolerance can be achieved. In a situation
where the local cluster becomes unavailable due to a disaster, ser-
vices can be pointed at another Active/Active cluster and only suf-
fer the latency penalty.

In Figure 4-2, the cluster in the south has gone down and yet
the services are still up. In this case, the services in the south are
being redirected to the cluster in the west. When the cluster in the
south is restored or replaced, it will automatically resynchronize,
and the connected services can reconnect to the local cluster. This
is possible because the data underlying the cluster is replicated
across multiple servers.

Caching with Active/Active
Commonly, a service may rely on a primary database and a cache.
The database could be a traditional relational database, a docu-
ment database, or even Redis itself. This database may have spe-
cific transactional or query requirements that cannot be met by
an Active/Active Redis Enterprise database itself. In this case, you
can employ an Active/Active database as a caching layer.

FIGURE 4-2:  Although one cluster is down, the services are still up.

CHAPTER 4 Active/Active and Microservices 43

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In this topology, writes are made to the primary database and
reads are cached into the Active/Active database. While the pri-
mary database is centralized, the cache writes and any invalida-
tions occur on an Active/Active database. This ensures that as
many operations as possible can bypass the bottleneck of the cen-
tralized server and hit the cache first. Active/Active ensures that
each geo-local cache is as up to date and not invalid as possible.

Figure 4-3 shows a cache setup with one cluster on the West Coast
and another on the East Coast of the United States:

»» Requests that come into the services on the West Coast have
a cache provided by the cluster on the West Coast, and the
same setup is on the East Coast.

»» If a particular cache value is invalidated by an update to
the primary database, the cache would be populated directly
to only one cluster. Through the Active/Active syncing
process, both clusters would have the same cached values
automatically — no need to manually update the West or
East Coast caches individually.

»» This prevents the primary database from populating the
cache twice, and it provides local latencies to the services.

Scaling writes with Active/Active
In some use cases — such as Internet of Things (IoT) or ana-
lytical data gathering — data may arrive extremely rapidly. In a

FIGURE 4-3:  Separate clusters prevent the primary database from
populating a cache twice.

44 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

microservices architecture that powers these types of use cases,
the write speed is critical. Although Redis (without Active/Active)
is widely used in these scenarios, extremely heavy writes can be
distributed by an Active/Active database.

In a traditional clustered environment with Redis, any single key
will reside in a single shard only for writing purposes. When the
write throughput driven to a single shard exceeds its capacity,
spreading the load over multiple clusters means that a single key
resides in two or more places. The single key’s conflicts can be
resolved automatically with CRDT resolution mechanisms pro-
vided by the Active/Active database.

Shown in Figure 4-4 is an example of a single key (foo) being
written to simultaneously by many services. The services on the
left are connected to one Active/Active Redis Enterprise cluster,
while the ones on the right are connected to another.

These two clusters would be able to achieve completely parallel
workloads, even working on the same piece of data.

In contrast, a traditional Redis Enterprise cluster would sequen-
tially process each request on the same piece of data: If all eight
requests came in precisely at the same time and each request
took, for example, one millisecond to process, the eighth request
would respond as complete in the eighth millisecond. With Active/
Active, the workload would be split, so the eighth request would be
processed at the fourth millisecond using the same assumptions.

FIGURE 4-4:  The single key (foo) is written to simultaneously by many
service instances across two clusters.

CHAPTER 4 Active/Active and Microservices 45

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Data is often more equally distributed than described in this sec-
tion. Traditional Redis Enterprise clusters can scale writes by
increasing the number of shards. While Active/Active would not
be greatly detrimental to write performance in a case where the
data had many keys distributed equally among the shards, scal-
ing writes with Active/Active would see the greatest benefits in a
situation with only a few, yet very active keys.

Knowing Where to Use (and Not Use)
Active/Active

CRDTs and, by extension, Active/Active are fascinating technol-
ogy, but these are not solutions for every problem. The most
important aspect to understand is that Active/Active will yield
results that aren’t immediately consistent. Because of the physi-
cal limits of signals, writes and reads processed from one location
still need to travel to the other location before they’ll be resolved.
The transmission between the two locations takes time. Conse-
quently, data will be incorrect for small amounts of time before
synchronization.

Take, for example, an account balance:

1.	 After synchronization, the account is known to have a balance
of $100 by both clusters. A user connected to Cluster A wants
to withdraw $60 from this account.

2.	 The service checks Cluster A’s copy of the data, sees that it
has more than the amount required, and processes the
withdraw.

3.	 At the same exact time, another user request to withdraw
$60 from the same account comes in with a service con-
nected to Cluster B. The service calculates that the account
has ample funds and also processes this withdraw.

4.	 Milliseconds later, Cluster A and Cluster B synchronize, and
the account balance is now –$20.

46 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This balance is correct, but Cluster A or Cluster B erroneously
approved the withdraws.

This is a case where it would be wholly inappropriate to use an
Active/Active database.

Currently, not all data types are available in Active/Active data-
bases, and Redis modules aren’t available either. If you need
to rely on an unsupported data type or module, think through
whether your data can be modeled in a fashion that would work
for the Active/Active compatible data types.

CHAPTER 5 Building a Service 47

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Describing the service

»» Looking at the service’s language and
setup

»» Exploring the lending and returning
events

»» Testing the service

Building a Service

In this chapter, we show an example of a service implemented in
Redis using Python. As with any microservices architecture,
each service individually is pretty simple; the power comes

from the composition of services into the architecture.

We use the example of an automated book-lending library —
imagine requesting a book and a robotic arm fetching the book from
a vast warehouse and depositing it into a bin right in front of you.

This service example illustrates the software steps and logic that
enable a portion of the overall service; this chapter also provides
a simulator of the other services that interact with the exam-
ple service. Find all of this on GitHub at https://github.com/
RedisLabs/redis-microservices-for-dummies.

Getting Clear on What This Service Does
The service is the Lending Service. The overall architecture of the
entire application could be very complex, handling a variety of
lending library operations like fines, membership, and so on, but
this service is responsible for just two primary things:

»» Processing book-lending requests

»» Processing book returns

https://github.com/RedisLabs/redis-microservices-for-dummies
https://github.com/RedisLabs/redis-microservices-for-dummies

48 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These processes need to understand what books the library has
and if these books are lendable or returnable. It also has to under-
stand if a given user has the ability to take the book out based on
a maximum lending limit. Importantly, it needs to do this in a
fault-tolerant way — if the service goes out mid-processing, it
won’t lead to a corrupt state or allow invalid actions to occur.

Because this is a synthetic example, here are a few assumptions
and simplifications:

»» Books are unique by ID, and this library has any book you
can imagine.

»» Books are always available as long as they’re not already
lent out.

»» Lending Service can only “store” a limited number of books
and is used for short-term storage only.

»» When books are not lent out or in short-term storage, they’re
managed by the faux Shelving Service.

Understanding the Language and Setup
The Lending Service is written in Python 3 using asyncio to pro-
vide nonblocking asynchronous operations (async / await). Addi-
tionally, it takes advantage of Redis’s built-in scripting language
Lua to provide concurrency control and to simplify the overall
service.

In the root directory of the GitHub repo is the main.py file. This
file will launch both the service and the simulator, so you can see

REDIS AND ROBOTS?
Combining robots, Redis, and a microservices architecture might
seem odd. Although the Lending Service example is a complete work
of fiction, the idea of using these together is not. The Los Angeles–
based company Elementary Robotics uses Redis in a microservices
architecture to control robots in industrial applications.

CHAPTER 5 Building a Service 49

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

how it all works together. In the /services directory are the fol-
lowing two files:

»» lending_service.py: The example service

»» shelving_service.py: A partially implemented service just
used to illustrate how lending_service.py works

We focus only on how lending_service.py works. The shelv-
ing_service.py provides only the bare minimum surface area
with which lending_service.py interacts. If you’re planning to
build a robotic library lending service, you should probably look
elsewhere for a boilerplate!

In the /lua directory, you’ll find the scripts that will be executed
by Redis. These scripts are stored as separate files in the reposi-
tory but will be transmitted to and compiled on the Redis server
where they’re also cached. Executions of the script will be invoked
by the EVALSHA Redis command. All the Lua scripts are invoked by
lending_service.py.

For the examples, you’ll need an instance of Redis. If you have
Redis installed on your machine, this could be a localhost instance,
or you could connect to a remote server as well such as Redis
Enterprise. Redis Enterprise is compatible with open source, and
you don’t need to do anything special or rewrite your application
to take advantage of the enterprise-grade features.

If you don’t have an instance of Redis handy, you can always
sign up for a free 30MB starter instance at https://redis.info/
dummies-free.

To get the service up and running, follow all the script installation
steps in the GitHub repo’s README file. After you’ve installed the
dependencies, run the main.py file with a unique process identi-
fier as the first argument:

$ python3 main.py myuniqueid

You may need to apply command-line switches if you have a
remote Redis server or have set a server password. Here are some
common options for the example code:

»» -a [your address] specifies a remote host name or IP
address.

https://redis.info/dummies-free
https://redis.info/dummies-free

50 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» --password [your password] passes an authentication
password to the Redis server.

»» -h displays the help for the command-line arguments.

This will launch the Lending and Shelving services for the exam-
ple. In a production scenario, you would deploy both services
individually instead of running a single Python script. This will
seemingly do very little, only outputting a line that reads "Ready
to process events...". Internally, the services are now ready to
process events but don’t yet have any events to process.

Processing Events
The Lending Service’s two actions (lending books and accepting
returns) have specific actions that occur in Redis both in mes-
saging and in storage. The messaging actions are based around
Redis Streams, and the storage is modeled with Sets, Counters,
and Hashes.

Lending books
To process lending requests, we have a few sub-steps to consider.
In the source code, this is in the file services/lending_
service.py and in the class LendingService and method
process_lending_request.

When reading from the stream, the method expects user_id and
book_ids as fields in the stream entry. Although not implemented
in the example code, the entry data would be accepted as part of
an internally exposed HTTP application programming interface
(API) endpoint for the LendingService.

The HTTP server would then insert the entry into the stream
using the XADD Redis command and end the HTTP connection. The
service endpoint isn’t waiting for the actual internal process to
complete, but rather waiting only for the entry to be added to the
stream (a very short amount of time).

The process_lending_request method first looks for any pre-
reserved books in a set with SMEMBERS and stores them in an inter-
nal processing array. This step is required to ensure that, in the
case of a crash during processing, any previously reserved books

CHAPTER 5 Building a Service 51

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

are processed. Then it takes the books requested with book_ids
and individually performs the following actions:

»» Checks if the book has been previously lent in a hash with
HEXISTS.

»» Tries to retrieve the book from automated storage by
atomically moving the book from the general book set into a
pre-reserved books set, adding it to the internal processing
array as well.

»» Tries to get the book from the Shelving Service by calling the
shelving_service.get_book method, which is a mocked-
up synchronous, idempotent REST API call to another
service. Pending the successful result of this call, it’s added to
the internal processing array.

Idempotence is an odd word but a simple concept. It means
that if you perform an action for the first time, it will change
in some way; but in subsequent times, it will not change.
Think of it as a machine that has an on and off button. If the
machine is off, pressing the on button is idempotent from an
off state — it turns on; from an on state, it’s still just on. The
reverse is true for the off button. A machine with a power
button that toggles the on/off state is an example of a
non-idempotent action.

The interesting thing about these steps is that they’re tolerant to
a crash during any point because the actions are idempotent. So,
if your underlying infrastructure dies, the entire set of actions
can be replayed without weird/partial states. This is enabled by
Redis’s set data structure itself not permitting duplicates.

After we have a complete list of books to process in the internal
processing array (sourced from any pre-reserved books and from
any new ones from this request), we can do one of two things:

»» If the internal processing array is empty, we can just
acknowledge that we’ve processed this entry in the stream
with the Redis stream command XACK.

»» If we have values in the internal processing array, we have to
process the books.

Processing the books requires that we transactionally modify the
keys — to do this, we use Redis’s Optimistic Concurrency Control

52 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

system with the WATCH command. This command enables us to
implement a user/key-level pseudo lock inside the script. This
means that if simultaneous requests from the same user came in,
only one would succeed.

This type of locking is useful in preventing fraudulent attempts at
exceeding limits by issuing two or more parallel requests.

At this point, we can safely evaluate if the request exceeds any
predefined lending limits:

»» If the limits are exceeded, then we have to compensate
by undoing reservations. This is accomplished with a Lua
script that streamlines several dependent modifications
down to a single Redis call. Finally, we delete the book
reservations key and acknowledge the stream entry.

This all occurs in a transaction, so while it’s running, it’s
uninterruptible.

»» If the limits are not exceeded, again start a transaction
and increment the lending count for the user. Then we
set the field for book ID and the value for the user ID in a
hash object that reflects the state of the borrowed books.

Still in the transaction, we can delete the book reservations
key and acknowledge the stream entry.

Returning books
Returning books works similarly to lending. Just like with lending
books, the information would come in through an HTTP endpoint,
which would then only write to a stream with XADD. The service is
monitoring the stream and will process those items in order. The
stream entry should have the user_id as well as the book_ids
fields.

Returning books starts a transaction and then all books IDs from
the book_ids field are put into a temporary Redis set.

The apply_book_return Lua script is invoked. This script iter-
ates through the temporary set of book_ids, deleting the book
field/value from the lent book’s hashmap if it’s lent to the user in
question. If the book is not lent to the user, it’s removed from the
temporary set so that the only items in the temporary set are the
successful returns. We can use this count (SCARD) to determine
the new count of books for a given user.

CHAPTER 5 Building a Service 53

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Next run the refill_automated_storage and the books_to_
stream Lua scripts — these are the same scripts run when lend-
ing the books, just composed in a different way.

Finally, we clean up the temporary key and acknowledge the
stream entry with XACK.

Interestingly, all this was run inside a Redis transaction, so we’re
completely safe from other instances messing with the data dur-
ing the entire course of running the return operation.

Invoking the Service
Now that you know how the service works, it’s time to take it for
a test spin. Because we’re showing only how a service works in
Redis, we’ve omitted the actual REST endpoints and deployment;
instead, we’ll interact with the service with a simple script.

If you were deploying the service, you would create your service in
the deployment environment of your choice and then attach your
Redis Enterprise database to it and expose all your proper ports
and addresses. This can take many forms; with Redis Enterprise’s
multi-tenancy, you have a lot of options to provide both persist-
ent and ephemeral instances to your services.

Before you begin, have the main.py script running in one terminal
window and invoke the service in another window. This will let
you see all the output logging of the service while being able to
interact with it.

First, borrow a book with the get_books.py script. This script
requires a few arguments: the operation (request or return) fol-
lowed by the user identifier and one or more book identifiers.

For these two arguments, you can just use Salvatore and ofmice-
andmen. Also, connect to a fictional Redis server located at
192.168.0.40 using wibblewobble as the password:

$ python3 get_books.py \
-a 192.168.0.40 \
--password wibblewobble \
request Salvatore ofmiceandmen

54 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The output of the main.py window should look something like
this (the large number is time based, so it will be different):

Ready to process events...
Request: [1566505618781-0] by Salvatore ACCEPTED.
Books:
1) ofmiceandmen

After borrowing the book, you should return it. To do that, you
can just run the same script with a different set of arguments:

$ python3 get_books.py \
-a 192.168.0.40 \
--password wibblewobble \
return Salvatore ofmiceandmen

The output of the main.py window should add something similar
to this line:

Book Return [1566505636987-0] PROCESSED

If you want to see what’s going on internally to the service and
you have access to the Redis command-line interface (redis-cli),
you can see how everything is being processed by Redis. To do
this, open yet another window and run the following command:

$ redis-cli MONITOR

You’ll frequently see XREADGROUP commands being displayed. If
you scroll back after running these operations, you’ll see all the
individual commands being run, including the XADD and XACK
commands that are managing the entries, as well as the com-
mands being called from the Python and Lua scripts.

CHAPTER 6 Ten Key Microservices Takeaways 55

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6
Ten Key Microservices
Takeaways

This book is about the microservices architecture and how
you can use Redis to help you develop and operate the archi-
tecture with high performance in mind. Here are ten key

takeaways regarding Redis and the microservices architecture:

»» Slow databases don’t work in a microservices architec-
ture. A microservices architecture is made up of many
individual parts that communicate with one another, and the
individual services should be stateless. The nontrivial
bottleneck in this architecture is a slow database.

»» Redis can be used as a database for a service. Redis is
configurable to be persistent, so you can use it to store data
for one or many of your services.

»» Redis can be used to connect services together. Redis
Streams are ideal for providing a durable, loglike record of
state changes. This allows for services to write to their own
stream and/or read from the streams of other services.

»» Redis can be used to cache values of other databases in
a service. Cumulative latency in microservices architectures
means that each service needs to operate as fast as possible.

56 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Putting Redis in front of slower databases as a cache
prevents expensive database calls.

»» Redis Enterprise is built for multi-tenancy. A single cluster
can provide isolated Redis databases that are a great fit for a
microservices architecture. You can isolate both data and
compute resources for your services, so you never have to
worry about noisy neighbors.

»» Your services can be distributed geographically. Redis
Enterprise provides conflict-free replicated data types
(CRDTs) that allow for Active/Active databases — you can
have instances of your services spread across the globe and
CRDTs allow reading and writing of data to the same
database without complicated conflict resolution.

»» You aren’t limited by the amount of random access
memory (RAM) in your cluster. Redis Enterprise allows you
to extend your RAM into flash memory (solid-state drives, or
SSDs). This means you can have much larger data sets than
could fit affordably into RAM alone.

»» Redis data structures can be composed for more
complex scenarios. A single built-in Redis data structure
doesn’t need to represent your entire data model. Instead,
consider each component of your data and which structure
could best represent it.

»» Modules extend Redis to do more. RediSearch allows for
rich, full-text search capabilities. RedisGraph is great for
complex, unstructured relationships to be queried.
RedisTimeSeries allows you to rapidly record and aggregate
over time-series data.

»» Redis gives you the right tools for the right job. One
example is Redis Pub/Sub, which trades persistence for
properties that make it a lightweight and yet robust tool for
propagating live notifications between services.

APPENDIX Advanced Microservices Design Patterns 57

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Advanced Microservices
Design Patterns

Design patterns enable software architects and developers to
apply a well-known solution to a particular problem.
Within this appendix is bonus material, including a link to

a video showing common design patterns with microservices.

Deploying microservices can be accomplished in numerous ways.
However, deployment of microservices to ensure scalability
requires an understanding of the best practices and the best tech-
nologies to meet the needs of modern applications.

Defining Microservices
Although there are multiple ways to deploy microservices, all
microservices have some generally agreed-upon characteristics
in common. At a very basic level, microservices divide mono-
lithic architectures into multiple services, each providing its
own component and each managing its own data. Components
are self-contained and designed around products, not projects.
Infrastructure automation is frequently used in order to reduce
the time to market for microservices. Microservices are designed
with failure scenarios in mind and benefit from an evolutionary
design and development flow.

Reviewing Design Patterns
Allen Terleto from Redis created a video for the Kafka Summit
2020 in which microservices and design patterns are discussed.
The video shows many common design patterns and even
an anti-pattern, as well as how Redis and Kafka are used as

Appendix

58 Redis Microservices For Dummies, 2nd Limited Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

industry-leading technologies meeting the need to deploy
microservices at scale. The video is available at https://
redis.com/webinars-on-demand/redis-and-kafka-advanced-
microservices-design-patterns-simplified/.

The design patterns and advanced concepts examined in the video
include:

»» Bounded context: Domain-driven design

»» An anti-pattern: Two-phase commit

»» Publish-subscribe pattern

»» Choreography-based saga (state machine)

»» Transactional outbox

»» Capturing telemetry

»» Event sourcing

»» Command Query Responsibility Segregation (CQRS)

»» Shared data

The video does an excellent job of covering both the concepts
themselves, as well as the reasons why a given design pattern
may be used. After watching the video, you’ll have a strong foun-
dation to build and deploy microservices at scale with Redis and
Kafka.

https://redis.com/webinars-on-demand/redis-and-kafka-advanced-microservices-design-patterns-simplified/
https://redis.com/webinars-on-demand/redis-and-kafka-advanced-microservices-design-patterns-simplified/
https://redis.com/webinars-on-demand/redis-and-kafka-advanced-microservices-design-patterns-simplified/

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

https://redis.com/cloud

https://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond This Book

	Chapter 1 What Is a Microservices Architecture?
	Defining Microservices Architecture
	Knowing Why You Would Use Microservices
	Starting from Zero or Breaking the Monolith
	Understanding Where Microservices Should Be Used
	Exploring How Redis Fits with Microservices
	Using Redis for Messaging
	Pub/sub
	Redis Streams
	Redis Lists

	Using Redis for Storage
	Hashes
	Sorted sets
	Search
	Graph
	JSON

	Using Redis for Caching
	Describing a Redis-Powered Microservices Architecture

	Chapter 2 Microservices Communication Patterns
	Defining a Stateless Service
	Knowing Where to Break the Monolith
	Getting Services Talking
	Having a Conversation with a Service
	Normal order
	Insufficient funds
	Unshippable product

	Chapter 3 Distributed State with Microservices
	Defining Distributed State
	Discovering the Needs of Distributed State
	Exploring Data Types
	Pub/sub
	Lists
	Streams

	Publish/Subscribe or Logged Events
	Getting Data across Multiple Services
	Clusters, Multi-Tenancy, and Redis Enterprise
	Nodes and shards
	The cluster and databases

	Chapter 4 Active/Active and Microservices
	What Are CRDTs, and What Is Active/Active?
	Synchronizing Data across Clusters
	Understanding How Data Changes
	Fitting Active/Active into a Microservices Architecture
	Primary data storage with Active/Active
	Caching with Active/Active
	Scaling writes with Active/Active

	Knowing Where to Use (and Not Use) Active/Active

	Chapter 5 Building a Service
	Getting Clear on What This Service Does
	Understanding the Language and Setup
	Processing Events
	Lending books
	Returning books

	Invoking the Service

	Chapter 6 Ten Key Microservices Takeaways
	Appendix Advanced Microservices Design Patterns
	Defining Microservices
	Reviewing Design Patterns

	EULA

